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Abstract:  Opically active 2,6-bis[(S5)-4'-benzyloxazolin-2"-yl]pyndine, pybox-(S,S)-
bz (1), proved 1o make a well-matched base-acid pair with the (S)-enantiomer of 1,1-bi-
2-naphthol on the basis of 1H-NMR study.

Recognition of molecular chirality is of importance in the wide range of bio-organic and organic chemistry.
Especially, some model studies in chirality recognition of organic molecules have been reporied for
determination of enantiomeric excess by spectroscopic or chromatographic methods.! Among them, a new
concept “complementary twist* was proposed for the complexation through dual hydrogen bond association
with a Cp-symmeirical diimine-diol pair.2 We have been interested in the chirality recognition with an optically
active bis(oxazoliny)pyridine, pybox, which was developed by us as a chiral nitrogen auxiliary for transition-
metal catalyzed asymmetric reactions.3

We reasoned that the Cp-symmetrical pybox derivatives (1, R = CHpPh4; 2, R = i-Pr3) can make a
reasonable chiral basic cavity having their three nitrogen atoms and the two bulky substituents to accept
appropriate chiral acids or alcohols. We report here the chirality recognition of 1,1-bi-2-naphthol (3) with the
pybox derivatives as basic receptors on the basis of 'H NMR study.
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Addition of one equivalent of pybox-(5,8)-bz (1) to a solution of racemic 1,1'-bi-2-naphthol ¢3) in CDCl;
solution showed a downfield shift of the original phenolic proton signal (OH, § 5.03 ppm) separated to the two
broad signals at d 6.48 and & 5.58 ppm (Fig. 1, a~¢). The downfield signal proved to be the OH proton

gnals at and & m (T The downfield signal proved to be the OH proton
derived from (5)-3 strongly associated with pybox 1 through hydrogen bonds in an equilibrium. The OH-
signals of each pure enantiomer of 3 with 1 appeared at § 6.50 ppm for (5)-3 and at 3 5.82 ppm for (R)-3,
respectively (Fig. 1, d and e).  Significantly, the resonance of the Cg-H on the oxazoline ring, originally
appearing at & 4.64 ppm, was shifted upfield by 0.53 8 to 4.11 ppm in the presence of (§)-3. In contrast, such
a remarkable shift could not be observed for (R)-3 moving, only by 0.13 & to 4.51 ppm (Fig.1, e). The greater
upfield shift of the Cq-H of 1 with (S)-3 could be accounted for an anisotropic effect of the naphthalenic ring
by the intense complexation of 1 and (8)-3 rather than (R)-3, as illustrated in Fig.2, a. Small intermolecular
NOE difference effects were observed between the benzylic protons of 1 and the phenolic protons of ($)-3.

Titration of each (S)- and (R)-binaphthol 3 with 1 in a NMR tube gave the association constants and the
limiting chemical shifts in the associates (Table 1). We obtained a large magnitude of enantioselectivity, A(AG)
=-5.1 kI mol-! (-1.2 kcal mol-1), derived from the Kg/Kg value.

’ (R)  C(4')-H

-onfse2

'I% o |® Cla')-H
6 50 an
a ) ”UL

| o =

(S)
-OH
6 48 5.58

N

R e AR A sy S e e T
6 5 4 3 ppm

o

q 'H NMR spectra (270 MHz, CDCI3) of pybox-(5,5)-bz 1 and
1"-bi-2-paphthol, (5)-3 and (R)-3: (a) 1; (b) racemic 3; (¢) 1 + racemic
3:4(d) 1+(-3(1:1);(e) 1+ R-3 (1: 1)
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Fig. 2 Hypothetical association of 1 + (5)-3 (left) and 1 + (R)-3 (right).

Thus pybox-(S,S5)-bz (1) has been shown to make a well-matched base-acid pair with the (§)-1,1'-bi-2-
naphthol. We think that the benzyl groups of 1 could serve to assist their association by the face-face stacking
between each aromatic rings. The stacking works intensively for the well matched pair of 1 and (S)-3 rather
than 1 and (R)-3 (Fig. 2). We assume that the two nitrogen atoms of the oxazoline rings on pybox could play a
major role for the association through the dual hydrogen bonds. Pybox-(S,5)-ip (2) showed the same
properties for the chirality recognition of the binaphthol (Table 1, run 3 and 4).

We also found the chirality differentiative recognition of binaphthyl-2,2"-diyl hydrogen phosphate (4) with 1
through mono hydrogen bond association. Pybox 1 binds strongly the (S)-enantiomer of 4: the chemical shift
of the OH protons occurring at 9.30 ppm for (S5)-4 and 8.95 ppm for (R)-4 with one equivalent of 1 (0.02 mol

dm-3 in CDCl3), respectively.

Table 1 Association constants of 1,1'-bi-2-naphthol and bis-oxazoline derivatives.2

run bis-oxazoline  binaphthol association Kg/Kg A(AG)
constant K kJ mol-1 (kcal mol-1)
(dm3 mol-1)
1 1 (S)-3 2
} 80 -5.1(-1.2)
2 1 (R)-3 5.3
3 2 (S)-3 14
} 40 -3.5(0.83)
4 2 (R)-3 34

a Concentration for the titration, 1.75 x 102 mol dm-3 of 3 (CDCl3); addition of the
bis-oxazoline, 0.5~2.0 equivalent to 3. The simple 1:1 association in the equilibrium
was hypothetically adopted for the calculation. The limiting chemical shifts of OH
signals for the associates, 86.9 for [1:(S)-3], 8 6.2 for [1:(R)-3], 3 6.6 for [2:(S)-3], 8
6.0 for [2:(R)-3].
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Non chiral receptors, 2,6-bis(4' 4"-dimethyloxazolin-2"-yl)pyridine [pybox-dm (§)] and 2,2%.6',2"-ter-
pyridine (6), gave smaller downfield shifts of the OH protons of binaphthol 3 by 0.32 & to 5.35 ppm and by
0.40 to 5.43 ppm (CDCl3), respectively. These facts indicate that the steric matching in the chiral environment
by the two bulky groups, benzy! or iso-propyl, of the chiral pybox 1 and 2 is also of importance for their strong
associations.

We are now applyihg the pybox derivatives as the NMR shift-reagents for the determination method of
enantiomeric purity for common chiral acids and alcohols.3
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