Chirality Recognition of 1,1[']-Bi-2-naphthol with Optically **Active Bis(oxazolinyl)pyridines**

Hisao Nishiyama,* Tomonorl Tajlma, Mssahiro Takapma, and Ktmji Itoh

School of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441, Japan

(Received in Japan 15 April 1993)

Abstract: Optically active 2.6 -bis $[(S)$ -4'-benzyloxazolin-2'-yl]pyridine, pybox- (S, S) bz **(l),** proved to make a well-matched base-acid pair with the (S)-enantiomer of l,l'-bi-2-naphthol on the basis of $1H\text{-}NMR$ study.

Recognition of molecular chirality is of importance in the wide range of bio-organic and organic chemistry. Especially, some model studies in chirality recognition of organic molecules have been reported for determination of enantiomeric excess by spectroscopic or chromatographic methods,¹ Among them, a new concept "complementary twist" was proposed for the complexation through dual hydrogen bond association with a C₂-symmetrical diimine-diol pair.² We have been interested in the chirality recognition with an optically active bis(oxazolinyl)pyridine, *pybox*, which was developed by us as a chiral nitrogen auxiliary for transitionmetal catalyzed asymmetric reactions?

We reasoned that the C₂-symmetrical pybox derivatives **(1, R** = CH₂Ph⁴; 2, R = i-Pr³) can make a reasonable chiral basic cavity having their three nitrogen atoms and the two bulky substituents to accept appropriate chiral acids or alcohols. We report here the chirality recognition of $1, 1$ '-bi-2-naphthol (3) with the pybox derivatives as basic receptors on the basis of ¹H NMR study.

1462 H. NISHIYAMA et *al.*

Addition of one equivalent of pybox- (S, S) -bz (1) to a solution of racemic 1,1⁻bi-2-naphthol (3) in CDCl₃ solution showed a downfield shift of the original phenolic proton signal (OH, δ 5.03 ppm) separated to the two broad signals at δ 6.48 and δ 5.58 ppm (Fig. 1, a-e). The downfield signal proved to be the OH proton derived from (S)-3 strongly associated with pybox 1 through hydrogen bonds in an equilibrium. The OHsignals of each pure enantiomer of 3 with 1 appeared at δ 6.50 ppm for (S)-3 and at δ 5.82 ppm for (R)-3, respectively (Fig. 1, d and e). Significantly, the resonance of the $C_{4}-H$ on the oxazoline ring, originally appearing at δ 4.64 ppm, was shifted upfield by 0.53 δ to 4.11 ppm in the presence of (S)-3. In contrast, such a remarkable shift could not be observed for (R) -3 moving, only by 0.13 δ to 4.51 ppm (Fig.1, e). The greater upfield shift of the C₄-H of 1 with (S)-3 could be accounted for an anisotropic effect of the naphthalenic ring by the intense complexation of 1 and (S) -3 rather than (R) -3, as illustrated in Fig.2, a. Small intermolecular NOE difference effects were observed between the benzylic protons of 1 and the phenolic protons of (S) -3.

Titration of each (S) - and (R) -binaphthol 3 with 1 in a NMR tube gave the association constants and the limiting chemical shifts in the associates (Table 1). We obtained a large magnitude of enantioselectivity, $\Delta(\Delta G)$ $=$ -5.1 kJ mol⁻¹ (-1.2 kcal mol⁻¹), derived from the K_S/K_R value.

Fig. 1 ¹H NMR spectra (270 MHz, CDCl3) of pybox- (S, S) -bz 1 and 1,l -bi-2naphtho1, Q-3 and (R)-3: (a) 1; **(b)** racemic 3 ; (c) 1 + racemic 3 ; (d) $1 + (S) - 3(1:1)$; (e) $1 + (R) - 3(1:1)$.

Fig. 2 Hypothetical association of $1 + (S)$ -3 (left) and $1 + (R)$ -3 (right).

Thus pybox-(S,S)-bz (1) has been shown to make a well-matched base-acid pair with the (S)-l,l'-bi-2 naphthol. We think that the benzyl groups of **1** could serve to assist their association by the face-face stacking between each aromatic rings. The stacking works intensively for the well matched pair of 1 and (S) -3 rather than 1 and (R) -3 (Fig. 2). We assume that the two nitrogen atoms of the oxazoline rings on pybox could play a major role for the association through the dual hydrogen bonds. Pybox- (S, S) -ip (2) showed the same properties for the chirafity recognition of the binaphthol (Table 1, run 3 and 4).

We also found the chirality differentiative recognition of binaphthyl-2,2'-diyl hydrogen phosphate (4) with **1** through mono hydrogen bond association. Pybox 1 binds strongly the (S) -enantiomer of 4: the chemical shift of the OH protons occurring at 9.30 ppm for (S) -4 and 8.95 ppm for (R) -4 with one equivalent of 1 (0.02 mol dm^{-3} in CDCl₃), respectively.

run	bis-oxazoline	binaphthol	association constant K $(dm3 mol-1)$	K_S/K_R	$\Delta(\Delta G)$ kJ mol ⁻¹ (kcal mol ⁻¹)
	1	$(S) - 3$	42	$+8.0$	$-5.1(-1.2)$
$\overline{2}$	1	$(R)-3$	5.3		
3	\mathbf{z}	$(S)-3$	14	$+4.0$	$-3.5(0.83)$
4	2	$(R) - 3$	3.4		

Table 1 Association constants of 1,1'-bi-2-naphthol and bis-oxazoline derivatives.^a

a Concentration for the titration, 1.75×10^{-2} mol dm⁻³ of 3 (CDCl3); addition of the bis-oxazoline, 0.5~2.0 equivalent to 3. The simple 1:1 association in the equilibrium was hypothetically adopted for the calculation. The limiting chemical shifts of OH signals for the associates, δ 6.9 for [1:(S)-3], δ 6.2 for [1:(R)-3], δ 6.6 for [2:(S)-3], δ 6.0 for $[2:(R)-3]$.

1464 **H. NISHIYAMA** et al.

Non chiral receptors, 2,6-bis(4',4'-dimethyloxazolin-2'-yl)pyridine [pybox-dm (5)] and 2,2':6',2"-terpyridine (6), gave smaller downfield shifts of the OH protons of binaphthol 3 by 0.32 δ to 5.35 ppm and by 0.40 to 5.43 ppm (CDCl3), respectively. These facts indicate that the steric matching in the chiral environment **by the two** bulky groups, benzyl or iso-propyl, of the chiral pybox **1** and 2 is also of importance for their strong associations.

We are now applying the pybox derivatives as the NMR shift-reagents for the determination method of enantiomeric purity for common chiral acids and alcohols.⁵

References and No&es

- 1 For examples, (a) W. H. Pirkle and T. C. Pochapsky, *Chem. Rev.*, **1989**, 89, 347. (b) R. Kellogg, Angew. Chem. Int. Ed. Engl., 1984, 23, 782. (c) F. Vögtle, H.-G. Löhr, J. Franke, and D. Worsch, Angew. *Chem. Int. Ed. Engl.*, 1985, 24, 727. (d) J. Canceil, L. Lacombe, and A. Collett, J. Am. Chem. Soc., 1985, 107; 6993. (e) J. Rebek, Jr., B. Askew, P. Ballester, and M. Doa, J. Am. Chem. Soc., **1987, 109, 411% (r) W. I-I. Pirkle and** D. S. Reno, J. Am. *Chem:Soc.,* 1987,109,7189. (g) P. P. Castro, T. M. Georgiadis, and F. N. Diederich, J. Org. Chem., 1990, 55, 5184. (h) K. S. Jeong, A. V. Muehldorf, and J. Rebeck, Jr., *J. Am. Chem. Soc.*, 1990, 112, 7393. (i) F. Garcia-Tellado, J. Albert, and A. D. Hamilton, *J. Chem. Sot., Gem.* **Commun., 1991, 1761.**
- **2** *Y.* Dobashi, A. drobashi, H. Ckhiai, and S. Ham, .I. Am. *Chem. SOL,* **1990,112, 6121; the references** for the recognition of molecular chirality are also sited therein.
- 3 (a) H. Nishiyama, M. Kondo, T. Nakamura, and K. Itoh, *Urganome~u~l~c~,* **1991, IO, 500. (b)** H. **Nishiyama, S, Ygmaguchi,** M. Kondo, K. Itoh, J. Org. Chem., 1992,57, 4306. (c) H. Nishiyamn, S.- B. Park, K. Itoh, *Tetrahedron: Asymmetry*, 1992, 3, 1029. (d) H. Nagashima, T. Ueda, H. Nishiyama, K. Itoh, *Chem. Lett..*, 1993, 347.
- 4 The preparation of 1 was performed with (S)-phenylalaninol by the method previously reported; see ref 3. 1: white solids; m.p. $147 \sim 148 \text{ °C}$; ¹H NMR (270 MHz, CDCl₃) δ 2.75 (dd, $J = 8.8$, 13.7 Hz, 2 H), 3.27 $(\text{dd}, J = 4.9, 13.7 \text{ Hz}, 2 \text{ H}), 4.26 \text{ (t, } J = 8.8, 8.8 \text{ Hz}, 2 \text{ H}), 4.46 \text{ (t, } J = 8.8, 8.8 \text{ Hz}, 2 \text{ H}), 4.64 \text{ (m, } 2 \text{ H})$ H), 7.2~7.4 (m, 10 H), 7.89 (t, J = 8.3, 8.3 Hz, 1 H), 8.20 (d, J = 8.3 Hz, 2 H); ¹³C NMR (67.8 MHz, CDC13) 41.63, $\frac{48.06}{72.54}$, 125.7, 126.5, 128.5, 129.1, 137.2, 137.7, 146.8, 162.7 ppm. Anal. for C_2 5H₂₃N₃O₂ :Found (Calcd); C, 75.55 (75.55); H, 5.82 (5.83); N, 10.51 (10.57). [α]²²D = -71.7 $(CH_2Cl_2, c = 1.02)$.
- 5 For example: with Pirkle's alcohol [2,2,2-trifluoro-l-(9-anmryl)ethanol (7), see ref **la];** lH NMR (270 MHz, CDCl₃) for the OH of 7 (a doublet at δ 2.90 ppm); $1 + (R)$ -7 (2:1), a doublet at δ 5.40; $1 + (S)$ -7 (2:1), a doublet at δ 5.30; $2 + (R)$ -7 (2:1), a doublet at δ 5.40; $2 + (S)$ -7 (2:1), a doublet at δ 5.30 ppm.