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Abstract: Optically active 2,6-bis[(Sj-4’-benzyloxazolin-2’-yl]pyrrdme, pybox-(S,s)- 

bz (l), proved to make a well-matched base-acid pair with the (S)-enantiomer of l,l’-bi- 

Z-naphthol on the basis of IH-h&E? study. 

Recognition of moiecular chirality is of im~ce in the wide range of bio-organic and organic themes. 

Especiidhj. some model studies in ~hirality ~gn~t~~ of organic molecules have beeu rejx3rted for 

det~iaa~~ of ~ti~e~c excess by spectmscopic or ~h~rna~g~~c met&&f Among them, a new 

concept ~com~~e~e~~a~ nYistff was proposed for the complexation through duaJ hydrogen bond association 

with a Crsymmetical diimine-dioi pair.3 We Iwe been interested in the chirality recognition with an optically 

active bis(o~olinyI)py~~ne, pybox, which was developed by us as a chiraf nitrogen auxiliary for transition- 

metal catalyzed asymmetric reactions? 

We reasoned that the C;?-symmetrical pybox derivatives (1, R = CH3Ph4; 2, R = i-Pr3) can make a 

reasonable chiral basic cavity having their three nitrogen atoms and the two bulky su~titue~ts to accept 

appropriate chiral acids or alcohols. We report here the chirality recognition of 1, I’-bi,i-Z-naphthot {3} with the 

pybox derivatives as basic receptors on the basis of tH NMR study. 
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Addition of one equivalent of pybox-(S,s)-bz (1) tn a solution of racemic l,l’-bi-2-naphthol (3) in CDCl5 

solution showed a downfield shift of the original phenolic proton signal (CZI, 6 5.03 ppm) separated to the two 

broad signals at 8 6M and S 5.58 ppm (Fig. 1, a-e). The downfield signal proved to be the OH proton 

derived from (q-3 strongly associated with pybox 1 through hydrogen bonds in an equilibrium. The OH- 
signals of each pure enantiomer of 3 with 1 appeared at 6 6.50 ppm for (q-3 and at 8 5.82 ppm for (R)-3, 

respectively (Fig. I, d and e>. Significantly, the resonance of the Q-H on the oxazoline ring, originally 
appearing at 6 4.64 ppin, was shifted upfield by 0.53 6 to 4.1 I ppm in the presence of (593. In contrast, such 

a remarkable shift cotid not be observed for (R)-3 moving, only by 0.13 6 to 4.51 ppm (Fig. 1, e). The greater 

upfield shift of the Q-H of I with (Q-3 could be accounted for an anisotropic effect of the naphthalenic ring 

by the intense compleocation of 1 and Q-3 rather than (m-3, as il~us~~ in Fig.2, a. Small ~n~~oiecul~ 

NOE difference effects were observed between the benzylic protons of 1 and the phenolic protons of (m-3. 

Titration of each (S)- and (R)-binaphtho13 with 1 in a NMR tube gave the association constants and the 

Iimiting chemical shifts in the associates (Table 1). We obtained a large magnitude of enantioselectivity, A(AG) 

= -5.1 kJ mol-1 (-I.2 kcsl moi-r), derived from the KdK~value. 
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Fiq. 1 lli Nh4R spectra (270 MHz, CDCI3) of pybox-(S.S)-bz 1 and 
1,l -bi-2naphtho1, Q-3 and (R)-3: (a) 1; (b) racemic 3 ; (c) 1 + racemic 
3 ;(a) 1 + (n-3 (1:l) ; (e) 1 + (R)-3 (1:l). 
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l+(s)-3 l+ (R)3 

Fig. 2 Hypothetical association of 1 + (q-3 (left) and 1 + (m-3 (right). 

Thus pybox-(S,S)-bz (1) has been shown to make a well-matched base-acid pair with the (S)-l,l’-bi-2- 

naphthol. We think that the benzyl groups of 1 could serve to assist their association by the face-face stacking 

between each aromatic rings. The stacking works intensively for the well matched pair of 1 and (q-3 rather 

than 1 and (Q-3 (Fig. 2). We assume that the two nitrogen atoms of the oxszoline rings on pybox could play a 

major role for the association through the dual hydrogen bonds. F’ybox-(S,s)-ip (2) showed the same 

properties for the chirafity recognition of the binaphthol (Table 1, run 3 and 4). 

We also found the chirality differentiative recognition of binaphthyl-2,2’-diyl hydrogen phosphate (4) with 1 

through mono hydrogen bond association. Pybox 1 binds strongly the Q-enantiomer of 4: the chemical shift 

of the OH protons occurring at 9.30 ppm for (q-4 and 8.95 ppm for (IQ-4 with one equivalent of l(O.02 mol 

dnr3 in CDCl3), respectively. 

Table 1 Association constants of l,l’-bi-2-naphtbol and bis-oxazoline derivatives.a 

run bis-oxazoline binaphthol association Ksl KR NW 
constant K k.l mol-t(kcal mol-*) 
(dm3 mol-t) 

1 1 (S)-3 42 
} 8.0 -5.1 (-1.2) 

2 1 (R)-3 5.3 

3 2 (S)-3 14 
} 4.0 -3.5 (0.83) 

4 2 (R)-3 3.4 

a Concentration for the titration, 1.75 x 10-Z mol dm3 of 3 (CDCl3); addition of the 
bis-oxazoline, 0.5-2.0 equivalent to 3. The simple 1: 1 association in the equilibrium 
was hypothetically adopted for the calculation. The limiting chemical shifts of OH 
signals for the associates, 66.9 for [l:(S)-3],6 6.2 for [l:(R)-3],8 6.6 for [2:(S)-31.8 
6.0 for [2:(R)-31. 
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Non chirat receptors, 2,6-bis(4’,4’-dimethyloxazolin-2’-yl)pyridine [pybox-dm (5)] and 2,2’:6’,2”-ter- 

pyridine (6), gave smaller downfield shifts of the OH protons of bjn~h~oi 3 by 0.32 8 to 5.35 ppm and by 

0.40 to 5.43 ppm (CDCI$, respectively. These facts indicate that the steric matching in the chhai environment 

by the two bulky groups, benzyl or iso-propyl, of the chiral pybox 1 and 2 is also of importance for their strong 

associations. 

We are now applying the pybox derivatives as the NMR shift-reagents for the determination method of 

en~~~e~c purity fan c~mon chiml acids and alcohoIs.5 
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